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A Pra
ti
al S
hema Theorem forGeneti
 Algorithm Design and TuningDavid E. Goldberg and Kumara SastryIllinois Geneti
 Algorithms Laboratory (IlliGAL)Department of General EngineeringUniversity of Illinois at Urbana-Champaign104 S. Mathews Ave, Urbana, IL 61801fdeg,ksastryg�uiu
.eduAbstra
tThis paper develops the theory that 
an en-able the design of geneti
 algorithms and
hoose the parameters su
h that the propor-tion of the best building blo
ks grow. A pra
-ti
al s
hema theorem has been used for thispurpose and its rami�
ation for the 
hoi
eof sele
tion operator and parameterizationof the algorithm is explored. In parti
ularsto
hasti
 universal sele
tion, tournament se-le
tion, and trun
ation sele
tion s
hemes areemployed to verify the results. Results agreewith the s
hema theorem and indi
ate thatit must be obeyed in order to as
ertain sus-tained growth of good building blo
ks. Theanalysis suggests that s
hema theorem aloneis insuÆ
ient to guarantee the su

ess of asele
tore
ombinative geneti
 algorithm.1 Introdu
tionThe importan
e of building blo
ks (BBs) and theirrole in the workings of GAs have long been re
ognized(Holland, 1975; Goldberg, 1989). Furthermore, thefollowing six 
onditions for a GA su

ess have beenproposed (Goldberg, Deb, & Clark, 1992): (1) Knowwhat GAs are pro
essing - building blo
ks (BBs), (2)ensure an adequate initial supply of raw BBs, (3) en-sure growth of superior BBs, (4) ensure the mixingof BBs, (5) ensure good de
isions among 
ompetingBBs, and (6) solve problems with bounded BB diÆ-
ulty. One of the important 
onditions is to make surethat the GA is well supplied with a suÆ
ient supply ofthe BBs required to solve a given problem. It is alsoequally important that the proportion of the good onesin the population grow. The �rst task is addressedelsewhere in this pro
eedings (Goldberg, Sastry, & La-toza, 2001), and the se
ond task, that is, the issue of

guaranteeing the in
rease in market share of good BBsin a population is addressed in the 
urrent study.The usual approa
h in a
hieving this is the s
hema the-orem (Holland, 1975; De Jong, 1975). Therefore, theobje
tive of this study is to utilize a pra
ti
al s
hematheorem to explore the rami�
ations of the s
hematheorem for the 
hoi
e of sele
tion operator and pa-rameterization of the algorithm. In this study we
onsider three sele
tion s
hemes: sto
hasti
 universalsele
tion (SUS) (Baker, 1987; Grefenstette & Baker,1989), s-wise tournament sele
tion (Goldberg, Korb,& Deb, 1989), and trun
ation sele
tion (Muhlenbein& S
hlierkamp-Voosen, 1993). SUS is a proportionates
heme and s-wise tournament sele
tion and trun
a-tion sele
tion are ordinal s
hemes. The performan
eof ea
h of these sele
tion s
hemes in both early as wellas late in the GA run is analyzed based on the s
hematheorem.We start by presenting a brief note on the s
hema the-orem, both its original version, and a generalized ver-sion. A simpli�ed version of the generalized s
hematheorem is then used for the BB growth design. Threedi�erent sele
tion s
hemes are 
onsidered in the lightof the BB growth design and are analyzed for param-eter settings to ensure the growth of best BBs in thepopulation.2 Generalized S
hema TheoremThere have been many studies on s
hema theorem,and a 
omplete literature review on s
hema theoremis beyond the s
ope of this study. Instead, we present abrief overview of s
hema theorem and refer the readerelsewhere (Goldberg, 1989) for a detailed exposition ofthe same. Under proportionate sele
tion, single-point
rossover, and no mutation, the s
hema theorem may
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be written as follows:hm(H; t+ 1)i � m(H; t)f(H; t)f(t) �1� p
 Æ(H)`� 1� ; (1)where hm (H; t+ 1)i is the expe
ted number of individ-uals that represent the s
hema H at generation t+ 1,m(H; t) is the number of individuals that represent thes
hemaH at generation t, f(H; t) is the average �tnessvalue of the individuals 
ontaining s
hema H at gen-eration t, f(t) is the average �tness of the populationat generation t, p
 is the 
rossover probability, Æ(H)is the de�ning length de�ned as the distan
e betweenthe outermost �xed positions of a s
hema, and ` is thestring length.Inspe
tion of the s
hema theorem and an analysisof proportionate sele
tion and single-point 
rossover(Goldberg, 1989), indi
ates that the the termm (H; t) f(H;t)f(t) a

ounts for the sele
tion, and the termh1� p
 Æ(H)`�1 i a

ounts for 
rossover operation. Itshould be noted that the term representing the sele
-tion operator is exa
t and the inequality o

urs dueto the 
rossover operation. Some fa
tors like 
rossoverbetween identi
al individuals (self-
rossover) are ne-gle
ted. The s
hema theorem tells us that the pro-portion of s
hemata in
reases when they have aboveaverage �tness and relatively low 
rossover disruption.However, the s
hema theorem as given by equation 1is restri
ted to proportionate sele
tion and one-point
rossover. This 
on
ern 
an be eliminated by identify-ing the 
hara
teristi
 form of s
hema theorem and sub-stituting appropriate terms for other sele
tion s
hemesand geneti
 operators. Re
ognizing that a sele
tions
heme might allo
ate the numbers of s
hemata in adi�erent manner, and a geneti
 operator might yielda di�erent survival probability when 
ompared to pro-portionate sele
tion and single point 
rossover, the fol-lowing generalized s
hema theorem (Goldberg & Deb,1991) 
an be writtenhm(H; t+ 1)i � m(H; t)
(H;mi; fi; t); (2)where,
(H;mi; fi; t) = �(H;mi; fi; t)Ps(H;mi; fi; t); (3)and � is the sele
tion fa
tor, and is a fun
tion of the�tness fun
tion fi, the distribution of stru
tures in thepopulation mi, at generation t. The value of � for as
hema H is 
al
ulated by adding the 
ontributionsof all the individual strings that are members of thes
hema H . Ps is a survival probability. The gener-alized s
hema theorem 
an alternatively be written in
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Figure 1: Limiting 
rossover probability p
 as a fun
-tion of sele
tion pressure sp for di�erent values of op-erator loss �.proportion form by dividing throughout by populationsize N as,hP (H; t+ 1)i � P (H; t)
(H;mi; fi; t): (4)This theorem states that desirable s
hemata grow if
 (H;mi; fi; t) � 1. Although both the sele
tion fa
tor� and the survival probability Ps are fun
tions of the�tness fun
tion and the population, both quantities
an be 
hara
terized more simply and are explained inthe following se
tion.3 Designing for BB GrowthTo employ the s
hema theorem in design, we simplifyit by repla
ing � with the sele
tion pressure sp, andparameterize the survival probability on an operatorloss � and the 
rossover probability p
. The s
hematheorem 
an now be written ashm (H; t+ 1)i � m (H; t) sp [1� p
�℄ : (5)Then the desirable s
hema's grow ifsp [1� p
�℄ � 1: (6)Rearranging in terms of 
rossover probability p
 givesP
 � 1� s�1p� : (7)The limiting p
 value is plotted as a fun
tion of se-le
tion pressure at di�erent 
rossing losses in �gure1. We 
an see that even in the 
ase of total loss ofs
hema integrity, BB market share growth 
an still be
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ensured with reasonable 
ombinations of suÆ
ient se-le
tion pressure and diminished 
rossover probability.An interesting fa
tor to note is that the s
hema the-orem 
an always be satis�ed with zero ex
hange |p
 = 0. However, in su
h a 
ase the whole basis ofoperation prin
iple of the GA with 
rossover is vio-lated. This suggests that s
hema theorem must beobeyed, but that does not guarantee even a modi
umof building blo
k ex
hange, whi
h is very importantfor a su

essful GA design.To apply the BB design developed in this se
tion ina real GA requires the 
onsideration of sele
tion pres-sure exerted by a given sele
tion pro
edure. This issueis addressed in the next se
tion for three di�erent se-le
tion s
hemes.4 Sele
tion S
hemes and Sele
tionPressureWe estimate the sele
tion pressure sp exerted in twophases, one early in the run and the other late in therun. The reason for doing so 
an be justi�ed as follows:The initial generations are 
riti
al to the su

ess of aGA run, be
ause unless a s
hema (or its 
omponents)grow at the outset, its 
han
es for su

ess later on arequite poor. However, even if the 
onditions early in aGA push the best BBs fairly aggressively, but as theevolution wears on, even s
hemes with fairly steadydrive toward 
onvergen
e loose some of their initialpun
h. This might be a deal breaker, be
ause the lossof sele
tion pressure 
ombined with high s
hema lossand �xed 
rossover probability might 
ause the evolu-tion to stall before the best BBs dominate the popu-lation.Here we 
onsider the sele
tion pressure exerted bythree sele
tion s
hemes, s-wise tournament, trun
a-tion, and proportionate sele
tion pro
edures.4.1 Tournament Sele
tionIn s-wise tournament sele
tion, s individuals are ran-domly drawn from a population (with or without re-pla
ement) and the best individual is sele
ted. As-sume that the initial proportion of superior BBs attime t = 0 is P0 and is very small. The proportionof the best individuals under sele
tion alone 
an bewritten as (Goldberg & Deb, 1991),Pt+1 = 1� (1� Pt)s : (8)To 
onsider the early performan
e of tournament se-le
tion, we 
al
ulate the sele
tion ratio �t = Pt+1=Pt

when Pt � 0. �t = P�1t [1� (1� Pt)s℄ : (9)Re
ognizing that P0 is small, and that (1�x)n � 1�nxfor small x, we obtain�t � 1� (1� sPt)Pt = s: (10)Thus early in the run when a good s
hema exists onlyin small proportions, the best s
hemas in
rease by afa
tor of s, the tournament size. This result is justi�ed,sin
e ea
h individual parti
ipates in an average of stournaments and the best individuals win all s of them.Equation 7 
an be written for the 
ase of tournamentsele
tion early in the run asp
 � 1� s�1� : (11)As the proportion of a good s
hema be
omes signi�-
ant, the e�e
tive loss due to 
rossover redu
es. Thiso

urs due to the fa
t that for many 
rossover opera-tors, a s
hema 
rossed with itself yields an instan
e ofthe same s
hema (Holland, 1975; S
ha�er, 1987). Thesu

ess probability, Ps, in
orporating self-
rosses 
anbe written as Ps = 1� p0
 (1� Pt) ; (12)where p0
 = p
�, and the term 1�Pt is the result of self
rossing | a s
hema 
ontained in a string 
rossed withanother string 
ontaining the s
hema is not disruptedregardless of the 
rossover point. The late behavior ofthe tournament sele
tion is then given byPt+1 = [1� (1� Pt)s℄ [1� p0
 (1� Pt)℄ : (13)To perform a late analysis, we assume that the betterstru
tures have taken over more than (1=s)th of thepopulation. Then the sele
tion term [1� (1� Pt)s℄approa
hes 1 and the late performan
e is des
ribed byPt+1 = [1� p0
 (1� Pt)℄ : (14)The sele
tion ratio, �t is given by�t = P�1t [1� p0
 (1� Pt)℄ : (15)It 
an be easily seen that �t � 1 if (1) 0 < Pt � 1, (2)0 < p0
 � 1, and (3) s [1� p0
℄ � 1, based on whi
h thesele
tion pressure and 
rossover probability are 
ho-sen for initial growth. Thus, by a

ounting for self-
rossing we have shown that the subsequent e�e
tiveslowing of 
onvergen
e rate due to sele
tion is morethan over
ome by the e�e
tive redu
tion in 
rossoverprobability.
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4.2 Trun
ation Sele
tionTrun
ation sele
tion is an ordinal sele
tion s
heme inwhi
h the top 1=s individuals in a population are givens 
opies ea
h. If the proportion Pt of best individu-als in a population is 1=s (early in the run), then thegrowth is geometri
, Pt+1 = sPt: (16)In other words, the sele
tion rate �t = s, whi
h isthe same as that for tournament sele
tion. On
e theproportion of good stru
tures rea
hes or ex
eeds 1=s�Pt � s�1�, the s
heme saturates and the �nal propor-tion is, Pt+1 = 1: (17)Therefore the late performan
e is in
uen
ed only bythe 
rossover operation and the proportion of goodstru
tures 
an be written asPt+1 = [1� p0
 (1� Pt)℄ : (18)Thus trun
ation and tournament sele
tion pro
edureshave essentially similar late performan
e.4.3 Proportionate Sele
tionTo understand the early performan
e of proportion-ate sele
tion, 
onsider a highly simpli�ed model. Con-sider two possible alternatives, 1 and 2, represented byobje
tive fun
tion values f1 and f2 respe
tively withf2 > f1. Here the assumption is that alternative 1is the average individual and alternative 2 is the bestindividual in the initial population. The proportion ofalternative 2 
an be tra
ked with the following di�er-en
e equation, Pt+1 = f2f tPt; (19)where f t is the average fun
tion value at generation t,and is given by f t = f1 (1� Pt) + f2Pt. Substitutingthis value in the above equation we get,Pt+1 = s(s� 1)Pt + 1Pt; (20)where s = f2=f1. The early performan
e, when thereis a small proportion of good stru
tures (Pt � 0), isgiven by Pt+1 � sPt. In other words, the sele
tion ratefor proportionate sele
tion early in the run is given by�t = s. This is similar to the early performan
e oftournament and trun
ation sele
tion. However, un-like tournament and trun
ation sele
tion s
hemes, thevalue of s will vary from problem to problem. It is veryhard to know a priori whether an arbitrarily s
aledproblem will have adequate sele
tion pressure. It is
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Figure 2: 8-bit trap fun
tionone of the reasons why ordinal sele
tion pro
edureslike tournament and trun
ation sele
tion are preferredover proportionate sele
tion (Baker, 1985). It is alsoone of the reasons for using some sort of s
aling pro-
edure along with proportionate sele
tion.Analysis of the late behavior of proportionate sele
tionfollows the similar pro
edure as that of the previoustwo sele
tion s
hemes. Modifying equation 20 to in-
orporate self-
rossing we get,Pt+1 = sPt(s� 1)Pt + 1 [1� p0
 (1� Pt)℄ : (21)Requiring the sele
tion rate to be greater than or equalto one, we get s(s� 1)Pt + 1 [1� p0
 (1� Pt)℄ � 1: (22)Rearranging the above relation yieldsp0
 � 1� s�1: (23)This model appears to show that proportionate sele
-tion would lead to full 
onvergen
e in any situation forwhi
h the initial situation was favorable. However, itshould be noted that s, de�ned as f2=f1, is not a 
on-stant during a run. In other words, both f2 and f1 
an
hange in every generation, and also that the average�tness f1 in
reases as a run goes on. This implies thatthe average �tness rises and the best BB's progress todominate the population stalls. This phenomenon 
anbe more a

urately modeled by repla
ing the term sof equation 22 with a term where f1 or the average�tness rises with in
reasing Pt. In the next se
tion,we verify the theory with 
omputational experiments.5 ResultsThe theory developed in the above two sub-se
tionsis veri�ed with a 
omputational experiment. Similar
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Figure 3: The experimental results showing the required 
rossover probability at a given sele
tion pressure fortournament with or without repla
ement, and trun
ation sele
tion at di�erent disruption rates: (a) � = 1.0, (b)� = 0.95, (
) � = 0.9, and (d) � = 0.85.
ontrol maps are reported elsewhere (Thierens, 1995),although the problem 
onsidered in the present study
onsists of a single building blo
k and has a knowns
hema disruption rate. We optimize a single 8-bittrap fun
tion (Goldberg, Deb, & Horn, 1992) (�gure2) with f8 = 7, f0 = 8, and trap break �tness fz = 0at z = 1. Single point 
rossover is used with eithertournament sele
tion (with and without repla
ement)or trun
ation sele
tion and the disruption rate is �xed.A trap fun
tion is used to make it diÆ
ult to �ndthe best point (all-zeros, 00000000) and easy to �ndthe se
ond best (all-ones, 11111111). Experiments arerun for spe
i�ed s values to determine the 
rossoverprobability p
 when 25 independent runs su

essfullyin
rease the proportion of the best strings for 10 
on-se
utive generations. The population size taken wasN = 5000. Bise
tion method was used to determinethe p
 value within a toleran
e of 10�5. The resultsshown in �gure 3 are average of 10 su
h independent

runs of the bise
tion method. Both tournament andtrun
ation sele
tion agree with the design equationwell at di�erent disruption rates, � = 0.85, 0.9, 0.95,and 1.0.The theory on proportionate sele
tion is veri�ed usingsto
hasti
 universal sele
tion. In these runs, neithers
aling nor ranking is employed and hen
e the sele
-tion pressure 
annot be manipulated independent ofthe problem s
aling. This results in three 
ases: (1)
onvergen
e to the best point (All-zeros, 00000000),(2) stall of the best point, at some proportionate value,and (3) mis-
onvergen
e to the se
ond best point (all-ones, 11111111). These three 
ases are exempli�ed in�gures 4(a){(d). The results shown are based on 25su

esses in 25 trials in a population of 5000.Figure 4(a) shows a su

essful takeover of the popula-tion by the best point. Initially, the inferior point (all-ones) grows faster, but due to low 
rossover probability
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Figure 4: The proportion of all-ones points and all-zeros points is plotted versus generation number at di�erent
rossover probabilities. The results are averaged over 25 independent runs.
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Figure 5: The proportion of all-ones points andall-zeros points when stall o

urs is plotted versus
rossover probability. The results are averaged over100 independent runs.

(p
 = 0.2), the superior point is able to 
ompletelytake over the population. Figures 4(b){(
) demon-strates the stall of all-zeros proportion at 
rossoverprobabilities, p
 = 0.225, and p
 = 0.23 respe
tively.Finally, �gure 4(d) indi
ates failure of the best pointto takeover the population at p
 = 0.26. The pro-portion of best and the se
ond best point when stallo

urs is plotted against 
rossover probability in �gure5. The results are averaged over 100 independent tri-als. The plot shows that at low 
rossover probabilitiesthe best point su

essfully takes over the population,at high 
rossover probabilities the best point fails tosustain the market share in
rease, and at intermedi-ate 
rossover probability values the best point stallsat some intermediate proportion value. However, itshould also noted that we 
an have either a total su
-
ess or total failure in take over of the population bythe best point. Examples of the same phenomena areshown in �gures 6(a){(d). In all these 
ases the propor-tion of best point stalls for a long time (30{70 gener-ations) and then either it su

eeds or fails to takeover
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Figure 6: Demonstration of su

ess and failure after intermediate stall at di�erent 
rossover probabilities (a)p
 = 0:215, (b) p
 = 0:22, (
) p
 = 0:225, and (d) p
 = 0:23. The results are of a single runthe population. The results shown are at 
rossoverprobabilities of 0.21, 0.215, 0.22, and 0.225. These re-sults indi
ate the reason for preferring pushier s
hemeslike tournament and trun
ation sele
tion over propor-tionate sele
tion.6 Con
lusionThis study 
learly shows that the s
hema theoremworks with di�erent sele
tion s
hemes and geneti
 op-erators and that it must be obeyed. The s
hema theo-rem provides a good bounding advi
e on how to assurethe growth of good subsolutions and to sustain thegrowth to takeover the population. Employing earlyand late analysis, it has been demonstrated that one
an set the GA parameters, the sele
tion pressure, sand the 
rossover probability p
 for tournament andtrun
ation sele
tion s
hemes to obey s
hema theorem.Uns
aled proportionate s
hemes have a tenden
y tostall, indi
ating that proportionate sele
tion s
hemes

though useful when applied with s
aling pro
eduresor ni
hing, should not be generally used without su
haugmentation. The fa
t that s
hema theorem 
an besatis�ed with a 
rossover probability of zero suggeststhat s
hema theorem does not 
onsider the positive ef-fe
ts of 
rossover, the ex
hange of BBs that is at theheart of GA me
hani
s.A
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