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Abstract

This paper develops the theory that can en-
able the design of genetic algorithms and
choose the parameters such that the propor-
tion of the best building blocks grow. A prac-
tical schema theorem has been used for this
purpose and its ramification for the choice
of selection operator and parameterization
of the algorithm is explored. In particular
stochastic universal selection, tournament se-
lection, and truncation selection schemes are
employed to verify the results. Results agree
with the schema theorem and indicate that
it must be obeyed in order to ascertain sus-
tained growth of good building blocks. The
analysis suggests that schema theorem alone
is insufficient to guarantee the success of a
selectorecombinative genetic algorithm.

1 Introduction

The importance of building blocks (BBs) and their
role in the workings of GAs have long been recognized
(Holland, 1975; Goldberg, 1989). Furthermore, the
following six conditions for a GA success have been
proposed (Goldberg, Deb, & Clark, 1992): (1) Know
what GAs are processing - building blocks (BBs), (2)
ensure an adequate initial supply of raw BBs, (3) en-
sure growth of superior BBs, (4) ensure the mixing
of BBs, (5) ensure good decisions among competing
BBs, and (6) solve problems with bounded BB diffi-
culty. One of the important conditions is to make sure
that the GA is well supplied with a sufficient supply of
the BBs required to solve a given problem. It is also
equally important that the proportion of the good ones
in the population grow. The first task is addressed
elsewhere in this proceedings (Goldberg, Sastry, & La-
toza, 2001), and the second ftask, that is, the issue of

guaranteeing the increase in market share of good BBs
in a population is addressed in the current study.

The usual approach in achieving this is the schema the-
orem (Holland, 1975; De Jong, 1975). Therefore, the
objective of this study is to utilize a practical schema
theorem to explore the ramifications of the schema
theorem for the choice of selection operator and pa-
rameterization of the algorithm. In this study we
consider three selection schemes: stochastic universal
selection (SUS) (Baker, 1987; Grefenstette & Baker,
1989), s-wise tournament selection (Goldberg, Korb,

& Deb, 1989), and truncation selection (Muhlenbein
& Schlierkamp-Voosen, 1993). SUS is a proportionate
scheme and s-wise tournament selection and trunca-
tion selection are ordinal schemes. The performance
of each of these selection schemes in both early as well
as late in the GA run is analyzed based on the schema

theorem.

We start by presenting a brief note on the schema the-
orem, both its original version, and a generalized ver-
sion. A simplified version of the generalized schema
theorem is then used for the BB growth design. Three
different selection schemes are considered in the light
of the BB growth design and are analyzed for param-
eter settings to ensure the growth of best BBs in the
population.

2 Generalized Schema Theorem

There have been many studies on schema theorem,
and a complete literature review on schema theorem
is beyond the scope of this study. Instead, we present a
brief overview of schema theorem and refer the reader
elsewhere (Goldberg, 1989) for a detailed exposition of
the same. Under proportionate selection, single-point
crossover, and no mutation, the schema theorem may
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be written as follows:
f(H, 1)

(m(H,t+ 1)) >m(H,t) 70 {1—])

where (m (H,t + 1)) is the expected number of individ-
uals that represent the schema H at generation ¢ + 1,
m(H,t) is the number of individuals that represent the
schema H at generation ¢, f(H,t) is the average fitness
value of the individuals containing schema H at gen-
eration ¢, f(t) is the average fitness of the population
at generation ¢, p. is the crossover probability, §(H)
is the defining length defined as the distance between
the outermost fixed positions of a schema, and £ is the
string length.

S(H)
cﬁ:| 3 (1)

Inspection of the schema theorem and an analysis
of proportionate selection and single-point crossover
(Goldberg, 1989), indicates that the the term

m (H,t) % accounts for the selection, and the term

1 p]

should be noted that the term representing the selec-
tion operator is exact and the inequality occurs due
to the crossover operation. Some factors like crossover
between identical individuals (self-crossover) are ne-
glected. The schema theorem tells us that the pro-
portion of schemata increases when they have above
average fitness and relatively low crossover disruption.

accounts for crossover operation. It

However, the schema theorem as given by equation 1
is restricted to proportionate selection and one-point
crossover. This concern can be eliminated by identify-
ing the characteristic form of schema theorem and sub-
stituting appropriate terms for other selection schemes
and genetic operators. Recognizing that a selection
scheme might allocate the numbers of schemata in a
different manner, and a genetic operator might yield
a different survival probability when compared to pro-
portionate selection and single point crossover, the fol-
lowing generalized schema theorem (Goldberg & Deb,
1991) can be written

(m(H,t+1)) >m(H, t)y(H,my, fi, 1), (2)
where,
y(H,my, fi,t) = ¢(H,my, fi,t)Ps(H,m;, fi,t), (3)

and ¢ is the selection factor, and is a function of the
fitness function f;, the distribution of structures in the
population m;, at generation t. The value of ¢ for a
schema H is calculated by adding the contributions
of all the individual strings that are members of the
schema H. Py is a survival probability. The gener-
alized schema theorem can alternatively be written in
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Figure 1: Limiting crossover probability p. as a func-
tion of selection pressure s, for different values of op-
erator loss e.

proportion form by dividing throughout by population
size N as,

(P(H,t+1)) > P(H,)y(H,mi, fi,1).  (4)

This theorem states that desirable schemata grow if
~v (H,m;, f;,t) > 1. Although both the selection factor
¢ and the survival probability P, are functions of the
fitness function and the population, both quantities
can be characterized more simply and are explained in
the following section.

3 Designing for BB Growth

To employ the schema theorem in design, we simplify
it by replacing ¢ with the selection pressure s,, and
parameterize the survival probability on an operator
loss € and the crossover probability p.. The schema
theorem can now be written as

(m (H,t+1)) 2m (H,t)sp[1 - pee]. (5)

Then the desirable schema’s grow if
sp [l = pee] 2 1. (6)
Rearranging in terms of crossover probability p. gives

1—s,!
P < ——. (7)
€
The limiting p. value is plotted as a function of se-
lection pressure at different crossing losses in figure
1. We can see that even in the case of total loss of
schema integrity, BB market share growth can still be
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ensured with reasonable combinations of sufficient se-
lection pressure and diminished crossover probability.
An interesting factor to note is that the schema the-
orem can always be satisfied with zero exchange —
p. = 0. However, in such a case the whole basis of
operation principle of the GA with crossover is vio-
lated. This suggests that schema theorem must be
obeyed, but that does not guarantee even a modicum
of building block exchange, which is very important
for a successful GA design.

To apply the BB design developed in this section in
a real GA requires the consideration of selection pres-
sure exerted by a given selection procedure. This issue
is addressed in the next section for three different se-
lection schemes.

4 Selection Schemes and Selection
Pressure

We estimate the selection pressure s, exerted in two
phases, one early in the run and the other late in the
run. The reason for doing so can be justified as follows:
The initial generations are critical to the success of a
GA run, because unless a schema (or its components)
grow at the outset, its chances for success later on are
quite poor. However, even if the conditions early in a
GA push the best BBs fairly aggressively, but as the
evolution wears on, even schemes with fairly steady
drive toward convergence loose some of their initial
punch. This might be a deal breaker, because the loss
of selection pressure combined with high schema loss
and fixed crossover probability might cause the evolu-
tion to stall before the best BBs dominate the popu-
lation.

Here we consider the selection pressure exerted by
three selection schemes, s-wise tournament, trunca-
tion, and proportionate selection procedures.

4.1 Tournament Selection

In s-wise tournament selection, s individuals are ran-
domly drawn from a population (with or without re-
placement) and the best individual is selected. As-
sume that the initial proportion of superior BBs at
time ¢ = 0 is Py and is very small. The proportion
of the best individuals under selection alone can be
written as (Goldberg & Deb, 1991),

Pii=1-(1-P)". (8)

To consider the early performance of tournament se-
lection, we calculate the selection ratio ¢y = P11 /P

when P; ~ 0.
¢r =P [1=(1-P)°]. (9)

Recognizing that Py is small, and that (1—2)" ~ 1—nz
for small x, we obtain

OIS %tspt) =s. (10)
Thus early in the run when a good schema exists only
in small proportions, the best schemas increase by a
factor of s, the tournament size. This result is justified,
since each individual participates in an average of s
tournaments and the best individuals win all s of them.
Equation 7 can be written for the case of tournament
selection early in the run as

-1
pes . (1)
€
As the proportion of a good schema becomes signifi-
cant, the effective loss due to crossover reduces. This
occurs due to the fact that for many crossover opera-
tors, a schema crossed with itself yields an instance of
the same schema (Holland, 1975; Schaffer, 1987). The
success probability, P;, incorporating self-crosses can
be written as

Py=1-p.(1-F), (12)

where p!, = p.€, and the term 1 — P, is the result of self
crossing  aschema contained in a string crossed with
another string containing the schema is not disrupted
regardless of the crossover point. The late behavior of
the tournament selection is then given by

P =[1-Q1-F)11-p,(1-PF). (13)

To perform a late analysis, we assume that the better
structures have taken over more than (1/s)" of the
population. Then the selection term [1 — (1 — BP;)7]
approaches 1 and the late performance is described by

P =[1-p,(1-P)]. (14)
The selection ratio, ¢; is given by
¢ =P [1-p.(1-F)]. (15)

It can be easily seen that ¢ > 1if (1) 0 < P; <1, (2)
0<p.<1,and (3) s[1 —p.] > 1, based on which the
selection pressure and crossover probability are cho-
sen for initial growth. Thus, by accounting for self-
crossing we have shown that the subsequent effective
slowing of convergence rate due to selection is more
than overcome by the effective reduction in crossover
probability.

www.manaraa.com



4.2 Truncation Selection

Truncation selection is an ordinal selection scheme in
which the top 1/s individuals in a population are given
s copies each. If the proportion P; of best individu-
als in a population is 1/s (early in the run), then the
growth is geometric,

Pt+1 = SPt. (16)

In other words, the selection rate ¢; = s, which is
the same as that for tournament selection. Once the
proportion of good structures reaches or exceeds 1/s
(Pt > 5’1), the scheme saturates and the final propor-
tion is,

Pt+1 - ]. (17)

Therefore the late performance is influenced only by
the crossover operation and the proportion of good
structures can be written as

P =[1-p,(1-P)]. (18)

Thus truncation and tournament selection procedures
have essentially similar late performance.

4.3 Proportionate Selection

To understand the early performance of proportion-
ate selection, consider a highly simplified model. Con-
sider two possible alternatives, 1 and 2, represented by
objective function values f; and fo respectively with
fo > fi. Here the assumption is that alternative 1
is the average individual and alternative 2 is the best
individual in the initial population. The proportion of
alternative 2 can be tracked with the following differ-
ence equation,

Py = QPt, (19)

t

where f, is the average function value at generation ¢,
and is given by f, = fi (1 — P,) + f2P;. Substituting
this value in the above equation we get,

S

Popg=— "
TGP +1

P, (20)

where s = fo/fi1. The early performance, when there
is a small proportion of good structures (P; a2 0), is
given by P;;1 =~ sP;. In other words, the selection rate
for proportionate selection early in the run is given by
¢t = s. This is similar to the early performance of
tournament and truncation selection. However, un-
like tournament and truncation selection schemes, the
value of s will vary from problem to problem. It is very
hard to know a priori whether an arbitrarily scaled
problem will have adequate selection pressure. It is
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Figure 2: 8-bit trap function

one of the reasons why ordinal selection procedures
like tournament and truncation selection are preferred
over proportionate selection (Baker, 1985). It is also
one of the reasons for using some sort of scaling pro-
cedure along with proportionate selection.

Analysis of the late behavior of proportionate selection
follows the similar procedure as that of the previous
two selection schemes. Modifying equation 20 to in-
corporate self-crossing we get,

SPt

Goop T -RL @Y

Py =
Requiring the selection rate to be greater than or equal
to one, we get

GhEEI RO RIzL @)

Rearranging the above relation yields
p.<1—s"" (23)

This model appears to show that proportionate selec-
tion would lead to full convergence in any situation for
which the initial situation was favorable. However, it
should be noted that s, defined as f2/f1, is not a con-
stant during a run. In other words, both fo and f; can
change in every generation, and also that the average
fitness f1 increases as a run goes on. This implies that
the average fitness rises and the best BB’s progress to
dominate the population stalls. This phenomenon can
be more accurately modeled by replacing the term s
of equation 22 with a term where f; or the average
fitness rises with increasing P;. In the next section,
we verify the theory with computational experiments.

5 Results

The theory developed in the above two sub-sections
is verified with a computational experiment. Similar
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Figure 3: The experimental results showing the required crossover probability at a given selection pressure for
tournament with or without replacement, and truncation selection at different disruption rates: (a) e = 1.0, (b)

e = 0.95, (c) e = 0.9, and (d) € = 0.85.

control maps are reported elsewhere (Thierens, 1995),
although the problem considered in the present study
consists of a single building block and has a known
schema disruption rate. We optimize a single 8-bit
trap function (Goldberg, Deb, & Horn, 1992) (figure
2) with fs = 7, fo = 8, and trap break fitness f, =0
at z = 1. Single point crossover is used with either
tournament selection (with and without replacement)
or truncation selection and the disruption rate is fixed.

A trap function is used to make it difficult to find
the best point (all-zeros, 00000000) and easy to find
the second best (all-ones, 11111111). Experiments are
run for specified s values to determine the crossover
probability p. when 25 independent runs successfully
increase the proportion of the best strings for 10 con-
secutive generations. The population size taken was
N = 5000. Bisection method was used to determine
thenppvaliuenwithinvantolerancenof 10 °. The results
shown in figure 3 are average of 10 such independent

runs of the bisection method. Both tournament and
truncation selection agree with the design equation
well at different disruption rates, ¢ = 0.85, 0.9, 0.95,
and 1.0.

The theory on proportionate selection is verified using
stochastic universal selection. In these runs, neither
scaling nor ranking is employed and hence the selec-
tion pressure cannot be manipulated independent of
the problem scaling. This results in three cases: (1)
convergence to the best point (All-zeros, 00000000),
(2) stall of the best point, at some proportionate value,
and (3) mis-convergence to the second best point (all-
ones, 11111111). These three cases are exemplified in
figures 4(a)—(d). The results shown are based on 25
successes in 25 trials in a population of 5000.

Figure 4(a) shows a successful takeover of the popula-
tion by the best point. Initially, the inferior point (all-
ones) grows faster, but due to low crossover probability
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Figure 4: The proportion of all-ones points and all-zeros points is plotted versus generation number at different
crossover probabilities. The results are averaged over 25 independent runs.
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Figure 5: The proportion of all-ones points and
all-zeros points when stall occurs is plotted versus
crossover probability. The results are averaged over
100 independent runs.

(pe = 0.2), the superior point is able to completely
take over the population. Figures 4(b) (c¢) demon-
strates the stall of all-zeros proportion at crossover
probabilities, p. = 0.225, and p. = 0.23 respectively.
Finally, figure 4(d) indicates failure of the best point
to takeover the population at p. = 0.26. The pro-
portion of best and the second best point when stall
occurs is plotted against crossover probability in figure
5. The results are averaged over 100 independent tri-
als. The plot shows that at low crossover probabilities
the best point successfully takes over the population,
at high crossover probabilities the best point fails to
sustain the market share increase, and at intermedi-
ate crossover probability values the best point stalls
at some intermediate proportion value. However, it
should also noted that we can have either a total suc-
cess or total failure in take over of the population by
the best point. Examples of the same phenomena are
shown in figures 6(a) (d). In all these cases the propor-
tion of best point stalls for a long time (30-70 gener-
ations) and then either it succeeds or fails to takeover
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Figure 6: Demonstration of success and failure after intermediate stall at different crossover probabilities (a)
pe = 0.215, (b) p. = 0.22, (¢) p. = 0.225, and (d) p. = 0.23. The results are of a single run

the population. The results shown are at crossover
probabilities of 0.21, 0.215, 0.22, and 0.225. These re-
sults indicate the reason for preferring pushier schemes
like tournament and truncation selection over propor-
tionate selection.

6 Conclusion

This study clearly shows that the schema theorem
works with different selection schemes and genetic op-
erators and that it must be obeyed. The schema theo-
rem provides a good bounding advice on how to assure
the growth of good subsolutions and to sustain the
growth to takeover the population. Employing early
and late analysis, it has been demonstrated that one
can set the GA parameters, the selection pressure, s
and the crossover probability p. for tournament and
truncation selection schemes to obey schema theorem.
Unscaled proportionate schemes have a tendency to
stall, indicating that proportionate selection schemes

though useful when applied with scaling procedures
or niching, should not be generally used without such
augmentation. The fact that schema theorem can be
satisfied with a crossover probability of zero suggests
that schema theorem does not consider the positive ef-
fects of crossover, the exchange of BBs that is at the
heart of GA mechanics.
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