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A Pratial Shema Theorem forGeneti Algorithm Design and TuningDavid E. Goldberg and Kumara SastryIllinois Geneti Algorithms Laboratory (IlliGAL)Department of General EngineeringUniversity of Illinois at Urbana-Champaign104 S. Mathews Ave, Urbana, IL 61801fdeg,ksastryg�uiu.eduAbstratThis paper develops the theory that an en-able the design of geneti algorithms andhoose the parameters suh that the propor-tion of the best building bloks grow. A pra-tial shema theorem has been used for thispurpose and its rami�ation for the hoieof seletion operator and parameterizationof the algorithm is explored. In partiularstohasti universal seletion, tournament se-letion, and trunation seletion shemes areemployed to verify the results. Results agreewith the shema theorem and indiate thatit must be obeyed in order to asertain sus-tained growth of good building bloks. Theanalysis suggests that shema theorem aloneis insuÆient to guarantee the suess of aseletoreombinative geneti algorithm.1 IntrodutionThe importane of building bloks (BBs) and theirrole in the workings of GAs have long been reognized(Holland, 1975; Goldberg, 1989). Furthermore, thefollowing six onditions for a GA suess have beenproposed (Goldberg, Deb, & Clark, 1992): (1) Knowwhat GAs are proessing - building bloks (BBs), (2)ensure an adequate initial supply of raw BBs, (3) en-sure growth of superior BBs, (4) ensure the mixingof BBs, (5) ensure good deisions among ompetingBBs, and (6) solve problems with bounded BB diÆ-ulty. One of the important onditions is to make surethat the GA is well supplied with a suÆient supply ofthe BBs required to solve a given problem. It is alsoequally important that the proportion of the good onesin the population grow. The �rst task is addressedelsewhere in this proeedings (Goldberg, Sastry, & La-toza, 2001), and the seond task, that is, the issue of

guaranteeing the inrease in market share of good BBsin a population is addressed in the urrent study.The usual approah in ahieving this is the shema the-orem (Holland, 1975; De Jong, 1975). Therefore, theobjetive of this study is to utilize a pratial shematheorem to explore the rami�ations of the shematheorem for the hoie of seletion operator and pa-rameterization of the algorithm. In this study weonsider three seletion shemes: stohasti universalseletion (SUS) (Baker, 1987; Grefenstette & Baker,1989), s-wise tournament seletion (Goldberg, Korb,& Deb, 1989), and trunation seletion (Muhlenbein& Shlierkamp-Voosen, 1993). SUS is a proportionatesheme and s-wise tournament seletion and truna-tion seletion are ordinal shemes. The performaneof eah of these seletion shemes in both early as wellas late in the GA run is analyzed based on the shematheorem.We start by presenting a brief note on the shema the-orem, both its original version, and a generalized ver-sion. A simpli�ed version of the generalized shematheorem is then used for the BB growth design. Threedi�erent seletion shemes are onsidered in the lightof the BB growth design and are analyzed for param-eter settings to ensure the growth of best BBs in thepopulation.2 Generalized Shema TheoremThere have been many studies on shema theorem,and a omplete literature review on shema theoremis beyond the sope of this study. Instead, we present abrief overview of shema theorem and refer the readerelsewhere (Goldberg, 1989) for a detailed exposition ofthe same. Under proportionate seletion, single-pointrossover, and no mutation, the shema theorem may
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be written as follows:hm(H; t+ 1)i � m(H; t)f(H; t)f(t) �1� p Æ(H)`� 1� ; (1)where hm (H; t+ 1)i is the expeted number of individ-uals that represent the shema H at generation t+ 1,m(H; t) is the number of individuals that represent theshemaH at generation t, f(H; t) is the average �tnessvalue of the individuals ontaining shema H at gen-eration t, f(t) is the average �tness of the populationat generation t, p is the rossover probability, Æ(H)is the de�ning length de�ned as the distane betweenthe outermost �xed positions of a shema, and ` is thestring length.Inspetion of the shema theorem and an analysisof proportionate seletion and single-point rossover(Goldberg, 1989), indiates that the the termm (H; t) f(H;t)f(t) aounts for the seletion, and the termh1� p Æ(H)`�1 i aounts for rossover operation. Itshould be noted that the term representing the sele-tion operator is exat and the inequality ours dueto the rossover operation. Some fators like rossoverbetween idential individuals (self-rossover) are ne-gleted. The shema theorem tells us that the pro-portion of shemata inreases when they have aboveaverage �tness and relatively low rossover disruption.However, the shema theorem as given by equation 1is restrited to proportionate seletion and one-pointrossover. This onern an be eliminated by identify-ing the harateristi form of shema theorem and sub-stituting appropriate terms for other seletion shemesand geneti operators. Reognizing that a seletionsheme might alloate the numbers of shemata in adi�erent manner, and a geneti operator might yielda di�erent survival probability when ompared to pro-portionate seletion and single point rossover, the fol-lowing generalized shema theorem (Goldberg & Deb,1991) an be writtenhm(H; t+ 1)i � m(H; t)(H;mi; fi; t); (2)where,(H;mi; fi; t) = �(H;mi; fi; t)Ps(H;mi; fi; t); (3)and � is the seletion fator, and is a funtion of the�tness funtion fi, the distribution of strutures in thepopulation mi, at generation t. The value of � for ashema H is alulated by adding the ontributionsof all the individual strings that are members of theshema H . Ps is a survival probability. The gener-alized shema theorem an alternatively be written in
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Figure 1: Limiting rossover probability p as a fun-tion of seletion pressure sp for di�erent values of op-erator loss �.proportion form by dividing throughout by populationsize N as,hP (H; t+ 1)i � P (H; t)(H;mi; fi; t): (4)This theorem states that desirable shemata grow if (H;mi; fi; t) � 1. Although both the seletion fator� and the survival probability Ps are funtions of the�tness funtion and the population, both quantitiesan be haraterized more simply and are explained inthe following setion.3 Designing for BB GrowthTo employ the shema theorem in design, we simplifyit by replaing � with the seletion pressure sp, andparameterize the survival probability on an operatorloss � and the rossover probability p. The shematheorem an now be written ashm (H; t+ 1)i � m (H; t) sp [1� p�℄ : (5)Then the desirable shema's grow ifsp [1� p�℄ � 1: (6)Rearranging in terms of rossover probability p givesP � 1� s�1p� : (7)The limiting p value is plotted as a funtion of se-letion pressure at di�erent rossing losses in �gure1. We an see that even in the ase of total loss ofshema integrity, BB market share growth an still be
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ensured with reasonable ombinations of suÆient se-letion pressure and diminished rossover probability.An interesting fator to note is that the shema the-orem an always be satis�ed with zero exhange |p = 0. However, in suh a ase the whole basis ofoperation priniple of the GA with rossover is vio-lated. This suggests that shema theorem must beobeyed, but that does not guarantee even a modiumof building blok exhange, whih is very importantfor a suessful GA design.To apply the BB design developed in this setion ina real GA requires the onsideration of seletion pres-sure exerted by a given seletion proedure. This issueis addressed in the next setion for three di�erent se-letion shemes.4 Seletion Shemes and SeletionPressureWe estimate the seletion pressure sp exerted in twophases, one early in the run and the other late in therun. The reason for doing so an be justi�ed as follows:The initial generations are ritial to the suess of aGA run, beause unless a shema (or its omponents)grow at the outset, its hanes for suess later on arequite poor. However, even if the onditions early in aGA push the best BBs fairly aggressively, but as theevolution wears on, even shemes with fairly steadydrive toward onvergene loose some of their initialpunh. This might be a deal breaker, beause the lossof seletion pressure ombined with high shema lossand �xed rossover probability might ause the evolu-tion to stall before the best BBs dominate the popu-lation.Here we onsider the seletion pressure exerted bythree seletion shemes, s-wise tournament, truna-tion, and proportionate seletion proedures.4.1 Tournament SeletionIn s-wise tournament seletion, s individuals are ran-domly drawn from a population (with or without re-plaement) and the best individual is seleted. As-sume that the initial proportion of superior BBs attime t = 0 is P0 and is very small. The proportionof the best individuals under seletion alone an bewritten as (Goldberg & Deb, 1991),Pt+1 = 1� (1� Pt)s : (8)To onsider the early performane of tournament se-letion, we alulate the seletion ratio �t = Pt+1=Pt

when Pt � 0. �t = P�1t [1� (1� Pt)s℄ : (9)Reognizing that P0 is small, and that (1�x)n � 1�nxfor small x, we obtain�t � 1� (1� sPt)Pt = s: (10)Thus early in the run when a good shema exists onlyin small proportions, the best shemas inrease by afator of s, the tournament size. This result is justi�ed,sine eah individual partiipates in an average of stournaments and the best individuals win all s of them.Equation 7 an be written for the ase of tournamentseletion early in the run asp � 1� s�1� : (11)As the proportion of a good shema beomes signi�-ant, the e�etive loss due to rossover redues. Thisours due to the fat that for many rossover opera-tors, a shema rossed with itself yields an instane ofthe same shema (Holland, 1975; Sha�er, 1987). Thesuess probability, Ps, inorporating self-rosses anbe written as Ps = 1� p0 (1� Pt) ; (12)where p0 = p�, and the term 1�Pt is the result of selfrossing | a shema ontained in a string rossed withanother string ontaining the shema is not disruptedregardless of the rossover point. The late behavior ofthe tournament seletion is then given byPt+1 = [1� (1� Pt)s℄ [1� p0 (1� Pt)℄ : (13)To perform a late analysis, we assume that the betterstrutures have taken over more than (1=s)th of thepopulation. Then the seletion term [1� (1� Pt)s℄approahes 1 and the late performane is desribed byPt+1 = [1� p0 (1� Pt)℄ : (14)The seletion ratio, �t is given by�t = P�1t [1� p0 (1� Pt)℄ : (15)It an be easily seen that �t � 1 if (1) 0 < Pt � 1, (2)0 < p0 � 1, and (3) s [1� p0℄ � 1, based on whih theseletion pressure and rossover probability are ho-sen for initial growth. Thus, by aounting for self-rossing we have shown that the subsequent e�etiveslowing of onvergene rate due to seletion is morethan overome by the e�etive redution in rossoverprobability.
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4.2 Trunation SeletionTrunation seletion is an ordinal seletion sheme inwhih the top 1=s individuals in a population are givens opies eah. If the proportion Pt of best individu-als in a population is 1=s (early in the run), then thegrowth is geometri, Pt+1 = sPt: (16)In other words, the seletion rate �t = s, whih isthe same as that for tournament seletion. One theproportion of good strutures reahes or exeeds 1=s�Pt � s�1�, the sheme saturates and the �nal propor-tion is, Pt+1 = 1: (17)Therefore the late performane is inuened only bythe rossover operation and the proportion of goodstrutures an be written asPt+1 = [1� p0 (1� Pt)℄ : (18)Thus trunation and tournament seletion proedureshave essentially similar late performane.4.3 Proportionate SeletionTo understand the early performane of proportion-ate seletion, onsider a highly simpli�ed model. Con-sider two possible alternatives, 1 and 2, represented byobjetive funtion values f1 and f2 respetively withf2 > f1. Here the assumption is that alternative 1is the average individual and alternative 2 is the bestindividual in the initial population. The proportion ofalternative 2 an be traked with the following di�er-ene equation, Pt+1 = f2f tPt; (19)where f t is the average funtion value at generation t,and is given by f t = f1 (1� Pt) + f2Pt. Substitutingthis value in the above equation we get,Pt+1 = s(s� 1)Pt + 1Pt; (20)where s = f2=f1. The early performane, when thereis a small proportion of good strutures (Pt � 0), isgiven by Pt+1 � sPt. In other words, the seletion ratefor proportionate seletion early in the run is given by�t = s. This is similar to the early performane oftournament and trunation seletion. However, un-like tournament and trunation seletion shemes, thevalue of s will vary from problem to problem. It is veryhard to know a priori whether an arbitrarily saledproblem will have adequate seletion pressure. It is
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Figure 2: 8-bit trap funtionone of the reasons why ordinal seletion proedureslike tournament and trunation seletion are preferredover proportionate seletion (Baker, 1985). It is alsoone of the reasons for using some sort of saling pro-edure along with proportionate seletion.Analysis of the late behavior of proportionate seletionfollows the similar proedure as that of the previoustwo seletion shemes. Modifying equation 20 to in-orporate self-rossing we get,Pt+1 = sPt(s� 1)Pt + 1 [1� p0 (1� Pt)℄ : (21)Requiring the seletion rate to be greater than or equalto one, we get s(s� 1)Pt + 1 [1� p0 (1� Pt)℄ � 1: (22)Rearranging the above relation yieldsp0 � 1� s�1: (23)This model appears to show that proportionate sele-tion would lead to full onvergene in any situation forwhih the initial situation was favorable. However, itshould be noted that s, de�ned as f2=f1, is not a on-stant during a run. In other words, both f2 and f1 anhange in every generation, and also that the average�tness f1 inreases as a run goes on. This implies thatthe average �tness rises and the best BB's progress todominate the population stalls. This phenomenon anbe more aurately modeled by replaing the term sof equation 22 with a term where f1 or the average�tness rises with inreasing Pt. In the next setion,we verify the theory with omputational experiments.5 ResultsThe theory developed in the above two sub-setionsis veri�ed with a omputational experiment. Similar
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Figure 3: The experimental results showing the required rossover probability at a given seletion pressure fortournament with or without replaement, and trunation seletion at di�erent disruption rates: (a) � = 1.0, (b)� = 0.95, () � = 0.9, and (d) � = 0.85.ontrol maps are reported elsewhere (Thierens, 1995),although the problem onsidered in the present studyonsists of a single building blok and has a knownshema disruption rate. We optimize a single 8-bittrap funtion (Goldberg, Deb, & Horn, 1992) (�gure2) with f8 = 7, f0 = 8, and trap break �tness fz = 0at z = 1. Single point rossover is used with eithertournament seletion (with and without replaement)or trunation seletion and the disruption rate is �xed.A trap funtion is used to make it diÆult to �ndthe best point (all-zeros, 00000000) and easy to �ndthe seond best (all-ones, 11111111). Experiments arerun for spei�ed s values to determine the rossoverprobability p when 25 independent runs suessfullyinrease the proportion of the best strings for 10 on-seutive generations. The population size taken wasN = 5000. Bisetion method was used to determinethe p value within a tolerane of 10�5. The resultsshown in �gure 3 are average of 10 suh independent

runs of the bisetion method. Both tournament andtrunation seletion agree with the design equationwell at di�erent disruption rates, � = 0.85, 0.9, 0.95,and 1.0.The theory on proportionate seletion is veri�ed usingstohasti universal seletion. In these runs, neithersaling nor ranking is employed and hene the sele-tion pressure annot be manipulated independent ofthe problem saling. This results in three ases: (1)onvergene to the best point (All-zeros, 00000000),(2) stall of the best point, at some proportionate value,and (3) mis-onvergene to the seond best point (all-ones, 11111111). These three ases are exempli�ed in�gures 4(a){(d). The results shown are based on 25suesses in 25 trials in a population of 5000.Figure 4(a) shows a suessful takeover of the popula-tion by the best point. Initially, the inferior point (all-ones) grows faster, but due to low rossover probability
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Figure 4: The proportion of all-ones points and all-zeros points is plotted versus generation number at di�erentrossover probabilities. The results are averaged over 25 independent runs.
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Figure 5: The proportion of all-ones points andall-zeros points when stall ours is plotted versusrossover probability. The results are averaged over100 independent runs.

(p = 0.2), the superior point is able to ompletelytake over the population. Figures 4(b){() demon-strates the stall of all-zeros proportion at rossoverprobabilities, p = 0.225, and p = 0.23 respetively.Finally, �gure 4(d) indiates failure of the best pointto takeover the population at p = 0.26. The pro-portion of best and the seond best point when stallours is plotted against rossover probability in �gure5. The results are averaged over 100 independent tri-als. The plot shows that at low rossover probabilitiesthe best point suessfully takes over the population,at high rossover probabilities the best point fails tosustain the market share inrease, and at intermedi-ate rossover probability values the best point stallsat some intermediate proportion value. However, itshould also noted that we an have either a total su-ess or total failure in take over of the population bythe best point. Examples of the same phenomena areshown in �gures 6(a){(d). In all these ases the propor-tion of best point stalls for a long time (30{70 gener-ations) and then either it sueeds or fails to takeover
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Figure 6: Demonstration of suess and failure after intermediate stall at di�erent rossover probabilities (a)p = 0:215, (b) p = 0:22, () p = 0:225, and (d) p = 0:23. The results are of a single runthe population. The results shown are at rossoverprobabilities of 0.21, 0.215, 0.22, and 0.225. These re-sults indiate the reason for preferring pushier shemeslike tournament and trunation seletion over propor-tionate seletion.6 ConlusionThis study learly shows that the shema theoremworks with di�erent seletion shemes and geneti op-erators and that it must be obeyed. The shema theo-rem provides a good bounding advie on how to assurethe growth of good subsolutions and to sustain thegrowth to takeover the population. Employing earlyand late analysis, it has been demonstrated that onean set the GA parameters, the seletion pressure, sand the rossover probability p for tournament andtrunation seletion shemes to obey shema theorem.Unsaled proportionate shemes have a tendeny tostall, indiating that proportionate seletion shemes
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